The sharp Sobolev type inequalities in the Lorentz–Sobolev spaces in the hyperbolic spaces
نویسندگان
چکیده
منابع مشابه
Sharp Singular Adams Inequalities in High Order Sobolev Spaces
In this paper, we prove a version of weighted inequalities of exponential type for fractional integrals with sharp constants in any domain of finite measure in R. Using this we prove a sharp singular Adams inequality in high order Sobolev spaces in bounded domain at critical case. Then we prove sharp singular Adams inequalities for high order derivatives on unbounded domains. Our results extend...
متن کاملSymmetrization and Sharp Sobolev Inequalities in Metric Spaces
We derive sharp Sobolev inequalities for Sobolev spaces on metric spaces. In particular, we obtain new sharp Sobolev embeddings and FaberKrahn estimates for Hörmander vector fields.
متن کاملPoincaré–type Inequalities for Broken Sobolev Spaces
We present two versions of general Poincaré–type inequalities for functions in broken Sobolev spaces, providing bounds for the Lq–norm of a function in terms of its broken H1–norm.
متن کاملthe u.s. policy in central asia and its impact on the colored revolutions in the region (the case study of tulip revolution in kyrgyzstan)
چکیده ندارد.
15 صفحه اولec 2 01 1 SHARP ADAMS TYPE INEQUALITIES IN SOBOLEV SPACES
The main purpose of our paper is to prove sharp Adams-type inequalities in unbounded domains of R for the Sobolev space W n m (R) for any positive integer m less than n. Our results complement those of Ruf and Sani [28] where such inequalities are only established for even integer m. Our inequalities are also a generalization of the Adams-type inequalities in the special case n = 2m = 4 proved ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2020
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2020.124197